New Urban Development Analysis in Oslo using Web Scraping (Python, Selenium) WIP

Gathered data displayed on a Google map using geocoded locations (json file)

Corresponding finn.no webpage

Online marketplace and ad websites contain a lot of valuable information, specifically about new architectural developments. Finn.no is the biggest such website in Norway and it is common if not standard to post real estate ads and information there.

Finn.no offers an API service, but as I am not a business I decided to go around it and make my own web scraper using Python and Selenium.

Looking at how finn.no web links are formatted, we can see that all the filters and parameters are in the link itself, which is of great help – https://www.finn.no/map/realestate/newbuildings?filters=&lat=59.85704&lon=10.86167&results=true&zoom=9

As this changes the data on the website we can easily change and adapt our scraper – https://www.finn.no/map/realestate/businessrent?filters=&lat=59.75312&lon=10.86585&results=true&zoom=10 (now we have results for office rent)

Example from the dataset:

NameDescriptionPriceURLAddress


Vestbyveien


SØRUMSAND: Ny enebolig med hybel under oppføring – 6 sov – 3 bad – God standard!


NA


https://www.finn.no/realestate/planned/ad.html?finnkode=399411444


Vestbyveien 14, 1920 Sørumsand


Spro Havn – Seilet A – C


SPRO HAVN /​ NESODDEN| Flott, gj.gående 4 roms med utsikt | Solrik, vestvendt balkong | Heis | Mulig garasje-/​båtplass


6 750 000 kr


https://www.finn.no/realestate/projectsingle/ad.html?finnkode=4042950591


Julius Rosens vei 35-39, 1454 Fagerstrand


Bråten


Fagerstrand/​Nesodden – Nytt salgstrinn – Leiligheter 80-110m2 – Solrike uteplasser – 2 solgt


4 895 000 – 6 195 000 kr


https://www.finn.no/realestate/project/ad.html?finnkode=343701712




Sagstubben, 1454 Fagerstrand
Example data gathered in first pass

Usually the prices are displayed either as a range or not available, but the full price table is available on the ad page. We can crawl through the pages again and gather the data:

NavnEnhetEtasjeBRA-iSoveromTotalprisURL IndexSource URL


Nytt salgstrinn i Ulvenplassen Humleblom borettslag, salgstrinn 2. Salgsstart…


1025
1

98 m²
2

9 954 533 kr


2


https://www.finn.no/realestate/project/ad.html?finnkode=404292402


Nytt salgstrinn i Ulvenplassen Humleblom borettslag, salgstrinn 2. Salgsstart…


1031
1

91 m²
3

9 001 313 kr


2


https://www.finn.no/realestate/project/ad.html?finnkode=404292402


Nytt salgstrinn i Ulvenplassen Humleblom borettslag, salgstrinn 2. Salgsstart…


2031
2

98 m²
3

9 404 533 kr


2


https://www.finn.no/realestate/project/ad.html?finnkode=404292402


Nytt salgstrinn i Ulvenplassen Humleblom borettslag, salgstrinn 2. Salgsstart…


3003
3

59 m²
2

5 836 363 kr


2


https://www.finn.no/realestate/project/ad.html?finnkode=404292402


Nytt salgstrinn i Ulvenplassen Humleblom borettslag, salgstrinn 2. Salgsstart…


3023
3

59 m²
1

5 636 593 kr


2


https://www.finn.no/realestate/project/ad.html?finnkode=404292402
Example data table for one project (not complete)

After merging all the data tables together we have 1435 entries of apartment data (including geocoded coordinates for google maps). This now allows us to perform data analysis on the gathered dataset (quick examples):

The next step would be to bring all this data into Rhino 3D with grasshopper and / or try out Qgis to better visualise the data, create heatmaps and so on.

Leave a Reply

Your email address will not be published. Required fields are marked *